论文标题
椭圆极化的狂犬病问题
The Rabi problem with elliptic polarization
论文作者
论文摘要
我们考虑经典/量子自旋的运动方程的解,约有单色,椭圆极化的外场。具有多项式系数的经典狂犬病问题可以简化为三阶微分方程,因此可以用功率序列求解,与线性极化发生的汇合heun方程相比。 Floquet理论的应用产生了物理上有趣的准认证,作为问题的参数的函数和共振频率的Bloch-Siegert偏移的表达。各种限制案例已经进行了彻底研究。
We consider the solution of the equation of motion of a classical/quantum spin subject to a monochromatical, elliptically polarized external field. The classical Rabi problem can be reduced to third order differential equations with polynomial coefficients and hence solved in terms of power series in close analogy to the confluent Heun equation occurring for linear polarization. Application of Floquet theory yields the physically interesting quasienergy as a function of the parameters of the problem and expressions for the Bloch-Siegert shift of resonance frequencies. Various limit cases cases have been thoroughly investigated.