论文标题

剂量的可集成液的拓扑结构

The topology of Bott integrable fluids

论文作者

Cardona, Robert

论文摘要

我们在每个可以存在的每个三个manifold中构建了具有分析性bernoulli函数的Euler方程(对于某些度量)的非变化稳定解:图形歧管。使用可积分系统的理论,任何可接受的摩尔斯 - 摩托函数都可以实现为某些不变稳定的Euler流的伯努利函数。这可以解释为Arnold结构定理的一个反问题,并将其作为必然的解决方案的拓扑分类。最后,我们证明拓扑障碍物在没有非悬念假设的情况下存在:稳定的Euler流具有Morse-Bott Bernoulli功能,仅在图三序列上存在。

We construct non-vanishing steady solutions to the Euler equations (for some metric) with analytic Bernoulli function in each three-manifold where they can exist: graph manifolds. Using the theory of integrable systems, any admissible Morse-Bott function can be realized as the Bernoulli function of some non-vanishing steady Euler flow. This can be interpreted as an inverse problem to Arnold's structure theorem and yields as a corollary the topological classification of such solutions. Finally, we prove that the topological obstruction holds without the non-vanishing assumption: steady Euler flows with a Morse-Bott Bernoulli function only exist on graph three-manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源