论文标题
数据稀疏区域的快速响应作物图
Rapid Response Crop Maps in Data Sparse Regions
论文作者
论文摘要
关于农田分布的空间信息,通常称为农田或农作物地图,是广泛的农业和粮食安全分析和决策的关键投入。但是,大多数国家不容易获得高分辨率的农田地图,尤其是在小农耕种(例如撒哈拉以南非洲)主导的地区。当决策者需要快速设计和制定与农业相关的政策和缓解策略时,这些地图在危机时期尤为重要,包括提供人道主义援助,分散有针对性的援助或提高农民的生产力。开发农作物地图的一个主要挑战是,许多地区对培训和验证预测模型所需的农田没有容易访问的地面真相数据,而现场运动对于收集标签以进行快速响应是不可行的。我们提出了一种在几乎没有地面数据的地区快速映射农田的方法。我们在多哥提出了这种方法的结果,在10天内,我们在10天内提供了高分辨率(10 m)的农田地图,以促进多哥政府对COVID-19的快速反应。这证明了机器学习应用研究的成功过渡,以在真实的人道主义危机中进行运营快速反应。所有地图,数据和代码均可公开使用,以实现数据 - 帕斯斯地区的未来研究和操作系统。
Spatial information on cropland distribution, often called cropland or crop maps, are critical inputs for a wide range of agriculture and food security analyses and decisions. However, high-resolution cropland maps are not readily available for most countries, especially in regions dominated by smallholder farming (e.g., sub-Saharan Africa). These maps are especially critical in times of crisis when decision makers need to rapidly design and enact agriculture-related policies and mitigation strategies, including providing humanitarian assistance, dispersing targeted aid, or boosting productivity for farmers. A major challenge for developing crop maps is that many regions do not have readily accessible ground truth data on croplands necessary for training and validating predictive models, and field campaigns are not feasible for collecting labels for rapid response. We present a method for rapid mapping of croplands in regions where little to no ground data is available. We present results for this method in Togo, where we delivered a high-resolution (10 m) cropland map in under 10 days to facilitate rapid response to the COVID-19 pandemic by the Togolese government. This demonstrated a successful transition of machine learning applications research to operational rapid response in a real humanitarian crisis. All maps, data, and code are publicly available to enable future research and operational systems in data-sparse regions.