论文标题

Wasserstein持续图的稳定性

Wasserstein Stability for Persistence Diagrams

论文作者

Skraba, Primoz, Turner, Katharine

论文摘要

持续图的稳定性是应用和计算拓扑结构中最重要的结果之一。大多数在图表和$ \ infty $ norm扰动之间的瓶颈距离方面,导致文献词稳定性。这有两个主要的含义:它使持久图的空间相当病态,并且通常提供相对于离群值的非常悲观的界限。在本文中,我们就持久图之间的$ p $ - 沃塞尔斯坦距离提供了新的稳定结果。这包括一个基本的证明,用于在扰动的$ p $ norm上设置足够有限空间的功能,以及用于$ p $ -P $ -Wasserstein距离的代数框架,将结果扩展到更宽的模块。我们还将结果应用于拓扑数据分析(TDA)的广泛应用,包括拓扑摘要,持久性变换以及越野式 - 里普斯复合物的特殊但重要情况。

The stability of persistence diagrams is among the most important results in applied and computational topology. Most results in the literature phrase stability in terms of the bottleneck distance between diagrams and the $\infty$-norm of perturbations. This has two main implications: it makes the space of persistence diagrams rather pathological and it is often provides very pessimistic bounds with respect to outliers. In this paper, we provide new stability results with respect to the $p$-Wasserstein distance between persistence diagrams. This includes an elementary proof for the setting of functions on sufficiently finite spaces in terms of the $p$-norm of the perturbations, along with an algebraic framework for $p$-Wasserstein distance which extends the results to wider class of modules. We also provide apply the results to a wide range of applications in topological data analysis (TDA) including topological summaries, persistence transforms and the special but important case of Vietoris-Rips complexes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源