论文标题
定价新数据
Pricing Fresh Data
论文作者
论文摘要
我们介绍了{\ it Fresh Data Trading}的概念,其中目标用户请求并支付来自源提供程序的新数据更新,并且数据新鲜度由{\ IT信息时代}(AOI)捕获。保持数据新鲜取决于源频繁的数据更新,这激发了源头{\ it prage alling Data}。在这项工作中,目的地会产生与年龄相关的成本,该成本以AOI的一般功能为模型。来源设计了定价机制,以最大化其利润;目的地选择数据更新时间表来权衡其向来源的付款及其与年龄相关的成本。根据不同的实时应用程序和场景,我们研究了可预测的deadline和不可预测的deadline模型。设计最佳定价方案的主要挑战在于目的地的时间间依赖性估值,这是由于AOI的性质和无限二维和动态优化。为此,我们考虑了三种定价方案,它们在设计定价时利用和理解三个不同维度的盈利能力:一个{\ it依赖时间依赖的定价方案,其中每个更新的价格取决于要求何时;一个基于数量的}定价方案,其中每个更新的价格取决于先前已要求的更新; {\ IT订阅}定价方案,其中每个更新的价格为扁平率,但源收取额外的订阅费。我们的分析表明,在可预测的截止日期和不可预测的截止日期模型下,基于最佳订阅的定价最大程度地提高了所有可能的定价方案的利润;基于最佳数量的定价方案仅在可预测的截止日期之前最佳。在不可预测的截止日期下,时间依赖的定价计划在大量时间折扣下渐近最佳。
We introduce the concept of {\it fresh data trading}, in which a destination user requests, and pays for, fresh data updates from a source provider, and data freshness is captured by the {\it age of information} (AoI) metric. Keeping data fresh relies on frequent data updates by the source, which motivates the source to {\it price fresh data}. In this work, the destination incurs an age-related cost, modeled as a general increasing function of the AoI. The source designs a pricing mechanism to maximize its profit; the destination chooses a data update schedule to trade off its payments to the source and its age-related cost. Depending on different real-time applications and scenarios, we study both a predictable-deadline and an unpredictable-deadline models. The key challenge of designing the optimal pricing scheme lies in the destination's time-interdependent valuations, due to the nature of AoI and the infinite-dimensional and dynamic optimization. To this end, we consider three pricing schemes that exploit and understand the profitability of three different dimensions in designing pricing: a {\it time-dependent} pricing scheme, in which the price for each update depends on when it is requested; a {\it quantity-based} pricing scheme, in which the price of each update depends on how many updates have been previously requested; a {\it subscription-based} pricing scheme, in which the price for each update is flat-rate but the source charges an additional subscription fee. Our analysis reveals that the optimal subscription-based pricing maximizes the source's profit among all possible pricing schemes under both predictable deadline and unpredictable deadline models; the optimal quantity-based pricing scheme is only optimal with a predictable deadline; the time-dependent pricing scheme, under the unpredictable deadline, is asymptotically optimal under significant time discounting.