论文标题
渐近函数的渐近函数
Asymptotic of summation functions
论文作者
论文摘要
我们将研究自然参数的求和函数的渐近行为,包括本文中主要论点的求和函数的渐近行为。获得了一个通用公式,用于确定基于Primes的渐近定律的质量论证函数之和的渐近行为。我们将在某些条件下证明: $ \ sum_ {p \ leq n} {f(p)} = \ sum_ {k = 2}^n {\ frac {f(k)} {\ log(k)}(k)}(1+o(1))} $,其中$ p $是质量数字。在本文中,证明了实现该公式的必要条件。
We will study the asymptotic behavior of summation functions of a natural argument, including the asymptotic behavior of summation functions of a prime argument in the paper. A general formula is obtained for determining the asymptotic behavior of the sums of functions of a prime argument based on the asymptotic law of primes. We will show, that under certain conditions: $\sum_{p \leq n} {f(p)}= \sum_{k=2}^n {\frac {f(k)}{\log(k)}(1+o(1))}$, where $p$ is a prime number. In the paper, the necessary and sufficient conditions for the fulfillment of this formula are proved.