论文标题
镜头空间的符号填充物
Symplectic fillings and cobordisms of lens spaces
论文作者
论文摘要
我们完成了镜头空间紧密接触结构的符号填充的分类。特别是,我们表明,在$ l(p,q)$上几乎已公开的接触结构的$ x $的任何符合性填充$ x $都有另一种符号结构,该结构填充了$ l(p,q)$的普遍紧密接触结构。此外,我们表明,$ L(P,Q)$具有最大第二同源性的Stein填充是由磁盘捆绑包的管道给出的。我们还考虑了在镜头空间之间构建符合性恢复的问题,并报告一些部分结果。
We complete the classification of symplectic fillings of tight contact structures on lens spaces. In particular, we show that any symplectic filling $X$ of a virtually overtwisted contact structure on $L(p,q)$ has another symplectic structure that fills the universally tight contact structure on $L(p,q)$. Moreover, we show that the Stein filling of $L(p,q)$ with maximal second homology is given by the plumbing of disk bundles. We also consider the question of constructing symplectic cobordisms between lens spaces and report some partial results.