论文标题

关于$ n^α$ mod 1的相关性

On the correlations of $n^α$ mod 1

论文作者

Technau, Niclas, Yesha, Nadav

论文摘要

均匀分布模量理论的一个众所周知的结果(可以追溯到fejér和csillag)指出,序列$(n^α)_ {n^α)_ {n \ ge1} $的分数零件$ \ {n^α\} $在$α> 0 $的情况下是单位间隔均匀分布的。为了将这些知识提高到本地统计信息,$ k $级别的相关函数$(\ {n^α\})_ {n \ geq1} $至关重要。我们证明,对于每个$ k \ ge2,$ k $级别的相关函数$ r_k $是poissonian,几乎每$α> 4K^2-4K-1 $。

A well known result in the theory of uniform distribution modulo one (which goes back to Fejér and Csillag) states that the fractional parts $\{n^α\}$ of the sequence $(n^α)_{n\ge1}$ are uniformly distributed in the unit interval whenever $α>0$ is not an integer. For sharpening this knowledge to local statistics, the $k$-level correlation functions of the sequence $(\{n^α\})_{n\geq1}$ are of fundamental importance. We prove that for each $k\ge2,$ the $k$-level correlation function $R_k$ is Poissonian for almost every $α>4k^2-4k-1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源