论文标题

BITMIX:图像切解分析的数据增强

BitMix: Data Augmentation for Image Steganalysis

论文作者

Yu, In-Jae, Ahn, Wonhyuk, Nam, Seung-Hun, Lee, Heung-Kyu

论文摘要

用于图像切解分析的卷积神经网络(CNN)通过采用高级视力任务的概念表现出更好的性能。使用的主要概念是使用数据扩展来避免由于数据有限而过度拟合。为了增强数据而不会损坏消息嵌入,仅使用90度或水平翻转的旋转倍数在stemansys中使用,该倍数从一个样本中产生八个固定结果。为了克服这一限制,我们提出了BitMix,这是一种用于空间图像切解分析的数据增强方法。 BitMix通过交换随机贴片并生成一个嵌入的自适应标签,并以换击贴片中修改的像素数与封面对中的像素的比例进行嵌入自适应标签来混合盖和Stego图像对。我们探索最佳的超参数,在迷你批次中应用BITMIX的比率以及用于交换补丁的边界框的大小。结果表明,使用BITMIX比其他数据增强方法改善了空间图像的性能,并且比其他数据增强方法更好。

Convolutional neural networks (CNN) for image steganalysis demonstrate better performances with employing concepts from high-level vision tasks. The major employed concept is to use data augmentation to avoid overfitting due to limited data. To augment data without damaging the message embedding, only rotating multiples of 90 degrees or horizontally flipping are used in steganalysis, which generates eight fixed results from one sample. To overcome this limitation, we propose BitMix, a data augmentation method for spatial image steganalysis. BitMix mixes a cover and stego image pair by swapping the random patch and generates an embedding adaptive label with the ratio of the number of pixels modified in the swapped patch to those in the cover-stego pair. We explore optimal hyperparameters, the ratio of applying BitMix in the mini-batch, and the size of the bounding box for swapping patch. The results reveal that using BitMix improves the performance of spatial image steganalysis and better than other data augmentation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源