论文标题

时空多分辨率近似用于分析全球环境数据

Spatiotemporal Multi-Resolution Approximations for Analyzing Global Environmental Data

论文作者

Appel, Marius, Pebesma, Edzer

论文摘要

技术发展和开放数据政策使每个人都可以访问大型全球环境数据集。为了分析此类数据集,包括使用基于高斯流程的传统模型的时空相关性,并不能随数据量扩展,并且需要关于平稳性,可分离性和协方差函数的距离度量的强烈假设,而协方差函数通常对全球数据是不现实的。只有很少的建模方法适当地模拟时空相关性,同时既解决计算可扩展性又符合柔性协方差模型。在本文中,我们为全局数据集的时空建模提供了多分辨率近似(MRA)方法的扩展。 MRA已被证明在分布式计算环境中具有计算可扩展性,并允许整合任意用户定义的协方差函数。我们的扩展增加了时空分区,并拟合了复杂的协方差模型,包括非平稳性与内核卷积和球形距离。我们使用模拟数据评估了MRA参数对估计和时空预测的影响,其中计算时间降低了两个数量级,而根平方预测误差约为5%。这允许在预测错误中交易计算时间,我们得出了选择MRA参数的实用策略。我们演示了如何实际使用该方法来分析全球尺度上的每日海面温度和降水数据,并比较了与协方差函数中复杂性不同的模型。

Technological developments and open data policies have made large, global environmental datasets accessible to everyone. For analysing such datasets, including spatiotemporal correlations using traditional models based on Gaussian processes does not scale with data volume and requires strong assumptions about stationarity, separability, and distance measures of covariance functions that are often unrealistic for global data. Only very few modeling approaches suitably model spatiotemporal correlations while addressing both computational scalability as well as flexible covariance models. In this paper, we provide an extension to the multi-resolution approximation (MRA) approach for spatiotemporal modeling of global datasets. MRA has been shown to be computationally scalable in distributed computing environments and allows for integrating arbitrary user-defined covariance functions. Our extension adds a spatiotemporal partitioning, and fitting of complex covariance models including nonstationarity with kernel convolutions and spherical distances. We evaluate the effect of the MRA parameters on estimation and spatiotemporal prediction using simulated data, where computation times reduced around two orders of magnitude with an increase of the root-mean-square prediction error of around five percent. This allows for trading off computation times against prediction errors, and we derive a practical strategy for selecting the MRA parameters. We demonstrate how the approach can be practically used for analyzing daily sea surface temperature and precipitation data on global scale and compare models with different complexities in the covariance function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源