论文标题
用于利用工业设备结构的图形神经网络:剩余使用寿命估计的应用
Graph Neural Networks for Leveraging Industrial Equipment Structure: An application to Remaining Useful Life Estimation
论文作者
论文摘要
自动化设备从流式传输多传感器时间序列数据中进行的自动化健康监测可用于实现基于条件的维护,避免突然的灾难性故障并确保高运营可用性。我们注意到,大多数复杂的机械具有据可查且易于访问的基础结构,可捕获子系统或模块之间的相互依存关系。诸如基于复发性神经网络(RNN)或卷积神经网络(CNNS)之类的深度学习模型未能明确利用这种潜在的领域知识来源,以进入学习过程。在这项工作中,我们建议以图形的形式捕获复杂设备的结构,并使用图形神经网络(GNN)对多传感器时间序列数据进行建模。使用剩余的有用寿命估计作为应用程序任务,我们评估了通过公开可用的Turbofan Engine基准数据集将图形结构合并的优势。我们观察到,提出的基于GNN的RUL估计模型与基于RNN和CNN等文献的几种强大基线相比,有利地比较。此外,我们观察到,博学的网络能够通过简单的注意机制来关注模块(节点),即将发生故障,从而有可能为可行的诊断铺平道路。
Automated equipment health monitoring from streaming multisensor time-series data can be used to enable condition-based maintenance, avoid sudden catastrophic failures, and ensure high operational availability. We note that most complex machinery has a well-documented and readily accessible underlying structure capturing the inter-dependencies between sub-systems or modules. Deep learning models such as those based on recurrent neural networks (RNNs) or convolutional neural networks (CNNs) fail to explicitly leverage this potentially rich source of domain-knowledge into the learning procedure. In this work, we propose to capture the structure of a complex equipment in the form of a graph, and use graph neural networks (GNNs) to model multi-sensor time-series data. Using remaining useful life estimation as an application task, we evaluate the advantage of incorporating the graph structure via GNNs on the publicly available turbofan engine benchmark dataset. We observe that the proposed GNN-based RUL estimation model compares favorably to several strong baselines from literature such as those based on RNNs and CNNs. Additionally, we observe that the learned network is able to focus on the module (node) with impending failure through a simple attention mechanism, potentially paving the way for actionable diagnosis.