论文标题
关于从年龄依赖性分支过程的更新方程的推导:流行病学的角度
On the derivation of the renewal equation from an age-dependent branching process: an epidemic modelling perspective
论文作者
论文摘要
更新过程是用于建模传染病暴发的一种流行方法。在更新过程中,以前的感染引起了未来的感染。但是,尽管这种表述似乎是明智的,但它在传染病上的应用可能很难从第一原则中证明是合理的。从贝尔曼(Bellman)和哈里斯(Harris)的开创性工作表明,续签方程式是对年龄依赖性分支过程的期望。在本文中,我们提供了原始Bellman Harris流程的详细推导。我们介绍了概括,以允许时间变化的繁殖数和外源性事件(例如进口)的核算。我们展示了在贝叶斯分层框架中很容易完成续签方程的推断。使用货架MCMC套件,我们适合韩国Covid-19案例数据,以估计繁殖数字和进口。我们的派生提供了基本的数学基本原理和假设,该假设是使用更新方程进行建模爆发的基础。
Renewal processes are a popular approach used in modelling infectious disease outbreaks. In a renewal process, previous infections give rise to future infections. However, while this formulation seems sensible, its application to infectious disease can be difficult to justify from first principles. It has been shown from the seminal work of Bellman and Harris that the renewal equation arises as the expectation of an age-dependent branching process. In this paper we provide a detailed derivation of the original Bellman Harris process. We introduce generalisations, that allow for time-varying reproduction numbers and the accounting of exogenous events, such as importations. We show how inference on the renewal equation is easy to accomplish within a Bayesian hierarchical framework. Using off the shelf MCMC packages, we fit to South Korea COVID-19 case data to estimate reproduction numbers and importations. Our derivation provides the mathematical fundamentals and assumptions underpinning the use of the renewal equation for modelling outbreaks.