论文标题
射频场诱导的电子迁移率在超速血浆中的释放状态
Radio frequency field-induced electron mobility in an ultracold plasma state of arrested relaxation
论文作者
论文摘要
笔球电离在状态选择的rydberg气体中释放电子,该气体的一氧化氮被夹在超音速分子束中。随后的电子冲击雪崩,分叉和淬火形成了无$^+$离子的紧密耦合的,空间相关的超低等离子体,以及具有自组织临界特征的电子。该血浆包含一氧化氮rydberg分子的残基。离子-Electron-Rydberg准平衡的常规流体动力学预测中性原子的快速衰减。取而代之的是,NO等离子体持续了毫秒或更多的等离子体,这表明淬火疾病会产生抑制的电子迁移率。支持这一主张,一个60 MHz的射频频率小于1 v cm $^{ - 1} $急剧动员电子,导致等离子体通过解离的重组和rydberg predissiciation导致等离子体消散。明显的密度依赖性表明,这种效果依赖于碰撞,使被捕的放松作为合奏的合作特性的思想。
Penning ionization releases electrons in a state-selected Rydberg gas of nitric oxide entrained in a supersonic molecular beam. Subsequent processes of electron impact avalanche, bifurcation, and quench form a strongly coupled, spatially correlated ultracold plasma of NO$^+$ ions and electrons that exhibits characteristics of self-organized criticality. This plasma contains a residue of nitric oxide Rydberg molecules. A conventional fluid dynamics of ion-electron-Rydberg quasi-equilibrium predicts rapid decay to neutral atoms. Instead, the NO plasma endures for a millisecond or more, suggesting that quenched disorder creates a state of suppressed electron mobility. Supporting this proposition, a 60 MHz radiofrequency field with a peak-to-peak amplitude less than 1 V cm$^{-1}$ acts dramatically to mobilize electrons, causing the plasma to dissipate by dissociative recombination and Rydberg predissociation. An evident density dependence shows that this effect relies on collisions, giving weight to the idea of arrested relaxation as a cooperative property of the ensemble.