论文标题

与块术语格式的多分嵌入相互作用以进行知识图完成

Multi-Partition Embedding Interaction with Block Term Format for Knowledge Graph Completion

论文作者

Tran, Hung Nghiep, Takasu, Atsuhiro

论文摘要

知识图完成是一项重要任务,旨在预测实体之间缺少的关系联系。知识图嵌入方法通过将实体和关系表示为嵌入向量并建模其相互作用以计算每个三重三倍的匹配分数来执行此任务。以前的工作通常将每个嵌入整体都视为整个嵌入,并建模了这些整个嵌入之间的相互作用,有可能使模型过于昂贵或需要专门设计的相互作用机制。在这项工作中,我们提出了具有块项格式的多分区嵌入交互(MEI)模型,以系统地解决此问题。 MEI将每个嵌入到多细分矢量中以有效限制相互作用。每种局部交互都以Tucker Tensor格式进行建模,并以块项张量格式进行建模,使MEI能够控制表现力和计算成本之间的权衡,从数据自动学习相互作用机制,并在链接预测任务上实现最先进的效果。此外,我们从理论上研究了参数效率问题,并得出了一个简单的经验验证的标准,以实现最佳参数权衡。我们还应用了MEI的框架,为以前模型中的几种特殊设计的交互机制提供了新的广义解释。源代码在https://github.com/tranhungnghiep/mei-kge上发布。

Knowledge graph completion is an important task that aims to predict the missing relational link between entities. Knowledge graph embedding methods perform this task by representing entities and relations as embedding vectors and modeling their interactions to compute the matching score of each triple. Previous work has usually treated each embedding as a whole and has modeled the interactions between these whole embeddings, potentially making the model excessively expensive or requiring specially designed interaction mechanisms. In this work, we propose the multi-partition embedding interaction (MEI) model with block term format to systematically address this problem. MEI divides each embedding into a multi-partition vector to efficiently restrict the interactions. Each local interaction is modeled with the Tucker tensor format and the full interaction is modeled with the block term tensor format, enabling MEI to control the trade-off between expressiveness and computational cost, learn the interaction mechanisms from data automatically, and achieve state-of-the-art performance on the link prediction task. In addition, we theoretically study the parameter efficiency problem and derive a simple empirically verified criterion for optimal parameter trade-off. We also apply the framework of MEI to provide a new generalized explanation for several specially designed interaction mechanisms in previous models. The source code is released at https://github.com/tranhungnghiep/MEI-KGE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源