论文标题
高保真机器学习大规模最佳功率流的近似
High-Fidelity Machine Learning Approximations of Large-Scale Optimal Power Flow
论文作者
论文摘要
交流最佳功率流(AC-OPF)是许多电源系统应用中的关键构建块。它以最小的成本确定生成器设定点,以满足功率需求,同时满足基本的物理和操作约束。它是非凸和NP-HARD,对于大型电源系统而言,计算挑战性。本文探讨了一种深度学习方法,以提高生成计划的随机性以及可再生能源的渗透率的增加,探讨了一种深入学习方法,以提供高效,准确的AC-OPF近似值。特别是,本文提出了深层神经网络和拉格朗日二元性的整合,以捕获身体和操作的约束。在法国传输系统的实际案例研究中评估了所得模型,称为OPF-DNN,最多3,400辆公共汽车和4,500条线。计算结果表明,OPF-DNN产生高度准确的AC-OPF近似值,其成本占最佳性的0.01%。 OPF-DNN以毫秒为单位生成的解决方案以高保真度捕获问题约束。
The AC Optimal Power Flow (AC-OPF) is a key building block in many power system applications. It determines generator setpoints at minimal cost that meet the power demands while satisfying the underlying physical and operational constraints. It is non-convex and NP-hard, and computationally challenging for large-scale power systems. Motivated by the increased stochasticity in generation schedules and increasing penetration of renewable sources, this paper explores a deep learning approach to deliver highly efficient and accurate approximations to the AC-OPF. In particular, the paper proposes an integration of deep neural networks and Lagrangian duality to capture the physical and operational constraints. The resulting model, called OPF-DNN, is evaluated on real case studies from the French transmission system, with up to 3,400 buses and 4,500 lines. Computational results show that OPF-DNN produces highly accurate AC-OPF approximations whose costs are within 0.01% of optimality. OPF-DNN generates, in milliseconds, solutions that capture the problem constraints with high fidelity.