论文标题
旋转三角形和瑟斯顿规范:同位素同源
Veering triangulations and the Thurston norm: homology to isotopy
论文作者
论文摘要
我们表明,一个弯曲的三角剖分$τ$指定了一个封闭的三个manifold的Thurston Norm Ball的脸部$σ$,并计算出锥体中的Thurston Norm以上$σ$。此外,我们表明$τ$完全整理了超过$σ$的圆锥体中的绷紧表面。该分析包括非层次的转向三角形和非纤维面孔。
We show that a veering triangulation $τ$ specifies a face $σ$ of the Thurston norm ball of a closed three-manifold, and computes the Thurston norm in the cone over $σ$. Further, we show that $τ$ collates exactly the taut surfaces representing classes in the cone over $σ$ up to isotopy. The analysis includes nonlayered veering triangulations and nonfibered faces.