论文标题

$ \ textsf {xsec} $:横截面评估代码

$\textsf{Xsec}$: the cross-section evaluation code

论文作者

Buckley, Andy, Kvellestad, Anders, Raklev, Are, Scott, Pat, Sparre, Jon Vegard, Abeele, Jeriek Van den, Vazquez-Holm, Ingrid A.

论文摘要

高阶横截面的评估是在HADRON COLLIDER和其他地方寻找新物理学的重要组成部分。对于大多数新的物理学过程,在强耦合$α_s$中以近期的固定术语以$α_s$或多发射重新量的固定功率以固定的术语或多发射重新亮相,在强耦合$α_s$中的近代序列(NLO)都知道总横截面。但是,这种高阶横截面的计算时间非常昂贵,并且排除了超过二维的参数空间扫描中有效评估。在这里,我们描述了软件工具$ \ textsf {xsec} $,该$允许使用基于机器学习回归的使用快速评估横截面,并使用在预先生成的参数点样本上训练的分布式高斯流程。该代码的第一个版本提供了LHC处的所有NLO最小超对称标准模型强生产横截面,用于单个风味最终状态,并以一秒钟的时间进行评估。此外,它计算回归误差,以及来自高阶贡献,Parton分布函数的不确定性以及$α_s$的误差的估计。虽然我们专注于超对称性的特定现象学模型,但该方法很容易概括到可能生成足够的训练样本的任何过程中。

The evaluation of higher-order cross-sections is an important component in the search for new physics, both at hadron colliders and elsewhere. For most new physics processes of interest, total cross-sections are known at next-to-leading order (NLO) in the strong coupling $α_s$, and often beyond, via either higher-order terms at fixed powers of $α_s$, or multi-emission resummation. However, the computation time for such higher-order cross-sections is prohibitively expensive, and precludes efficient evaluation in parameter-space scans beyond two dimensions. Here we describe the software tool $\textsf{xsec}$, which allows for fast evaluation of cross-sections based on the use of machine-learning regression, using distributed Gaussian processes trained on a pre-generated sample of parameter points. This first version of the code provides all NLO Minimal Supersymmetric Standard Model strong-production cross-sections at the LHC, for individual flavour final states, evaluated in a fraction of a second. Moreover, it calculates regression errors, as well as estimates of errors from higher-order contributions, from uncertainties in the parton distribution functions, and from the value of $α_s$. While we focus on a specific phenomenological model of supersymmetry, the method readily generalises to any process where it is possible to generate a sufficient training sample.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源