论文标题
在二维中统一Parton和耦合线方法的量子磁性
Unification of parton and coupled-wire approaches to quantum magnetism in two dimensions
论文作者
论文摘要
微观自由度的分数是量子多体系统中强相互作用的显着表现。对该现象的分析研究主要基于两个不同的框架:Partons的现场理论和新兴仪表场,或一维量子线的耦合阵列。我们将这些方法统一用于二维自旋系统。通过精确的操作,我们演示了Parton仪表理论是如何在微型电线阵列中产生的,并将旋转算子与新兴的准粒子和量规型电池单极管相关联。这种对应关系使我们能够在配方中计算物理相关函数,并导致一种直接的算法,用于构造hamiltonians的parent hamiltonians在各种外来阶段。我们为几种手性和非手力量子自旋液体的技术举例说明了这一技术。
The fractionalization of microscopic degrees of freedom is a remarkable manifestation of strong interactions in quantum many-body systems. Analytical studies of this phenomenon are primarily based on two distinct frameworks: field theories of partons and emergent gauge fields, or coupled arrays of one-dimensional quantum wires. We unify these approaches for two-dimensional spin systems. Via exact manipulations, we demonstrate how parton gauge theories arise in microscopic wire arrays and explicitly relate spin operators to emergent quasiparticles and gauge-field monopoles. This correspondence allows us to compute physical correlation functions within both formulations and leads to a straightforward algorithm for constructing parent Hamiltonians for a wide range of exotic phases. We exemplify this technique for several chiral and non-chiral quantum spin liquids.