论文标题

鲁棒性的许多面孔:对分布外概括的批判性分析

The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization

论文作者

Hendrycks, Dan, Basart, Steven, Mu, Norman, Kadavath, Saurav, Wang, Frank, Dorundo, Evan, Desai, Rahul, Zhu, Tyler, Parajuli, Samyak, Guo, Mike, Song, Dawn, Steinhardt, Jacob, Gilmer, Justin

论文摘要

我们介绍了四个新的现实世界发行变化数据集,其中包括图像样式,图像模糊,地理位置,相机操作等的变化。借助我们的新数据集,我们会库存以前建议的方法来改善分布鲁棒性并进行测试。我们发现,与先前的工作中的主张相反,使用较大的模型和人工数据增强可以改善现实世界分布变化的鲁棒性。我们发现,与先前工作的主张相反,人工鲁棒性基准的改进可以转移到现实世界的分布变化。通过观察到数据增强可以帮助实现现实世界分布的变化的动机,我们还引入了一种新的数据增强方法,该方法推进了最先进的和优于预算的模型,并以1000倍的标记数据进行了预测。总体而言,我们发现某些方法始终有助于纹理和局部图像统计数据的分布变化,但是这些方法无助于其他分布变化(例如地理变化)。我们的结果表明,未来的研究必须同时研究多个分布变化,因为我们证明没有评估的方法始终如一地提高鲁棒性。

We introduce four new real-world distribution shift datasets consisting of changes in image style, image blurriness, geographic location, camera operation, and more. With our new datasets, we take stock of previously proposed methods for improving out-of-distribution robustness and put them to the test. We find that using larger models and artificial data augmentations can improve robustness on real-world distribution shifts, contrary to claims in prior work. We find improvements in artificial robustness benchmarks can transfer to real-world distribution shifts, contrary to claims in prior work. Motivated by our observation that data augmentations can help with real-world distribution shifts, we also introduce a new data augmentation method which advances the state-of-the-art and outperforms models pretrained with 1000 times more labeled data. Overall we find that some methods consistently help with distribution shifts in texture and local image statistics, but these methods do not help with some other distribution shifts like geographic changes. Our results show that future research must study multiple distribution shifts simultaneously, as we demonstrate that no evaluated method consistently improves robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源