论文标题
特殊谎言superalgebra $ e(5,10)$的单数矢量程度的限制
A bound on the degree of singular vectors for the exceptional Lie superalgebra $E(5,10)$
论文作者
论文摘要
我们使用谎言伪algebras的语言来获取有关简单无限二维线性紧凑型的表示理论的信息。这项技术使我们能够证明最小Verma模块中的单数矢量程度为$ \ leq 14 $。一些技术调整使我们能够完善界限,证明该学位必须始终为$ \ leq 12 $,实际上是,除了有限数量的案例,$ \ leq 10 $。
We use the language of Lie pseudoalgebras to gain information about the representation theory of the simple infinite-dimensional linearly compact Lie superalgebra of exceptional type $E(5,10)$. This technology allows us to prove that the degree of singular vectors in minimal Verma modules is $\leq 14$. A few technical adjustments allow us to refine the bound, proving that the degree must always be $\leq 12$ and it is actually, except for a finite number of cases, $\leq 10$.