论文标题

在混合物分布上的复制交换的光谱差距。

Spectral Gap of Replica Exchange Langevin Diffusion on Mixture Distributions

论文作者

Dong, Jing, Tong, Xin T.

论文摘要

Langevin扩散(LD)是抽样问题的主要主力之一。但是,如果目标分布是多个密度的混合物,则可以显着降低其收敛速率,尤其是当每个组件集中在不同模式周围时。复制交换Langevin扩散(RELD)是一种可以避免此问题的抽样方法。尤其是,Reld添加了另一个LD采样目标密度的高温版本,并根据大都会狂暴类型的法律交换两个LDS的位置。可以将这种方法进一步扩展到多个复制交换Langevin扩散(MRELD),其中$ k $附加的LDS添加到不同温度下的样本分布中,并在相邻的温度过程之间进行交流。尽管RELD和MRELD已广泛用于统计物理,分子动力学和其他应用中,但对其收敛速率和温度选择的现有分析很少。假设目标分布是对数凸透密度的混合物,则本文关闭了这些间隙。我们显示,即使混合物的密度分量集中在孤立模式周围时,Reld也可以获得恒定甚至更好的收敛速率。我们还显示,使用$ k $额外的LDS使用MRELD可以达到相同的结果,而交换频率只需要$(1/k)$ - RELD中的一个功率。

Langevin diffusion (LD) is one of the main workhorses for sampling problems. However, its convergence rate can be significantly reduced if the target distribution is a mixture of multiple densities, especially when each component concentrates around a different mode. Replica exchange Langevin diffusion (ReLD) is a sampling method that can circumvent this issue. In particular, ReLD adds another LD sampling a high-temperature version of the target density, and exchange the locations of two LDs according to a Metropolis-Hasting type of law. This approach can be further extended to multiple replica exchange Langevin diffusion (mReLD), where $K$ additional LDs are added to sample distributions at different temperatures and exchanges take place between neighboring-temperature processes. While ReLD and mReLD have been used extensively in statistical physics, molecular dynamics, and other applications, there is little existing analysis on its convergence rate and choices of temperatures. This paper closes these gaps assuming the target distribution is a mixture of log-concave densities. We show ReLD can obtain constant or even better convergence rates even when the density components of the mixture concentrate around isolated modes. We also show using mReLD with $K$ additional LDs can achieve the same result while the exchange frequency only needs to be $(1/K)$-th power of the one in ReLD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源