论文标题
$γ$ ray-ray发射同位素生产的反应速率敏感性
Reaction Rate Sensitivity of the Production of $γ$-ray Emitting Isotopes in Core-Collapse Supernova
论文作者
论文摘要
在核心偏离超新星(CCSNE)中产生的放射性同位素为推动塌陷机制和元素丰度的起源的基础过程提供了有用的见解。他们的研究产生了主要物理研究的融合,包括对核反应率,天体物理建模和$γ$ -Ray观测值的实验测量。在这里,我们确定了CCSNE期间爆炸性硅燃烧中可观察到的放射性同位素的核合成的关键核反应速率。使用核反应网络计算器天线和当前的ReaClib反应速率,我们从核心崩溃和$ 12〜m_ \ odot $ star的核心崩溃和爆炸中进化了最内向的$ 0.45〜m_ \ odot $ ejecta的温度密度时间曲线。 Individually varying 3403 reaction rates by factors of 100, we identify 141 reactions which cause significant differences in the isotopes of interest, namely, $^{43}$K, $^{47}$Ca, $^{44,47}$Sc, $^{44}$Ti, $^{48,51}$Cr, $^{48,49}$V, $^{52,53} $ MN,$^{55,59} $ fe,$^{56,57} $ co和$^{56,57,59} $ ni。对于这些反应中的每一个,我们提出了一种新的方法,可以提取与相关同位素的核合成有关的温度范围。由此产生的温度在于$ t = 0.47 $至$ 6.15〜 $ gk的范围内。将变化的变化限制在Starlib反应率不确定性的$1σ$之内,进一步降低了已确定的反应对48个关键率,可用于指导未来的实验研究。完整的结果以表格形式表示。
Radioactive isotopes produced in core-collapse supernovae (CCSNe) provide useful insights into the underlying processes driving the collapse mechanism and the origins of elemental abundances. Their study generates a confluence of major physics research, including experimental measurements of nuclear reaction rates, astrophysical modeling, and $γ$-ray observations. Here we identify the key nuclear reaction rates to the nucleosynthesis of observable radioactive isotopes in explosive silicon-burning during CCSNe. Using the nuclear reaction network calculator SkyNet and current REACLIB reaction rates, we evolve temperature-density-time profiles of the innermost $0.45~M_\odot$ ejecta from the core collapse and explosion of a $12~M_\odot$ star. Individually varying 3403 reaction rates by factors of 100, we identify 141 reactions which cause significant differences in the isotopes of interest, namely, $^{43}$K, $^{47}$Ca, $^{44,47}$Sc, $^{44}$Ti, $^{48,51}$Cr, $^{48,49}$V, $^{52,53}$Mn, $^{55,59}$Fe, $^{56,57}$Co, and $^{56,57,59}$Ni. For each of these reactions, we present a novel method to extract the temperature range pertinent to the nucleosynthesis of the relevant isotope; the resulting temperatures lie within the range $T = 0.47$ to $6.15~$GK. Limiting the variations to within $1σ$ of STARLIB reaction rate uncertainties further reduces the identified reactions to 48 key rates, which can be used to guide future experimental research. Complete results are presented in tabular form.