论文标题

$ \ mathbb {r}^n $中非线性schrödinger方程的新型解决方案

New type of solutions for the Nonlinear Schrödinger Equation in $\mathbb{R}^N$

论文作者

Duan, Lipeng, Musso, Monica

论文摘要

我们为非线性schrödinger方程构建了一个新的解决方案的新家庭 \ begin {align*} \ begin {case} -Δu+ v(y)u = u^p,\ quad u> 0,\ quad \ text {in}〜\ m athbb {r}^n, \\ [2mm] u \ in H^1(\ Mathbb {r}^n),\ end {case} \ end end {align*}其中$ p \ in(1,1,\ frac {n+2} {n-2} {n-2} {n-2} {n-2} {n-2} {n-2})$ and $ n \ n \ geq 3 $,和$ v(y ys unitation ys yise y yes y y y y y y y | y |) = v_0 + \ frac {a} {| y |^m} + o(\ frac {1} {| y |^{m +σ}}),\ quad {\ mbox {as}}}} \ quad | y | y | y | \ to \ infty,$$对于某些固定常数$ v_0,a,σ> 0 $和$ m> 1 $。我们的解决方案具有很强的类比,与Yamabe方程的整个有限能量换入解决方案的构建增加了一倍。

We construct a new family of entire solutions for the nonlinear Schrödinger equation \begin{align*} \begin{cases} -Δu+ V(y ) u = u^p, \quad u>0, \quad \text{in}~ \mathbb{R}^N, \\[2mm] u \in H^1(\mathbb{R}^N), \end{cases} \end{align*} where $p\in (1, \frac{N+2}{N-2})$ and $N\geq 3$, and $V (y)= V(|y|)$ is a positive bounded radial potential satisfying $$ V(|y|) = V_0 + \frac{a}{|y|^m} + O( \frac{1}{|y|^{m+σ}} ), \quad {\mbox {as}} \quad |y| \to \infty , $$ for some fixed constants $V_0, a, σ>0$, and $m>1$. Our solutions have strong analogies with the doubling construction of entire finite energy sign-changing solution for the Yamabe equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源