论文标题

在HOPF纤维化下的两个交叉数量的代数结上

On two crossing numbers of algebraic knots under Hopf fibration

论文作者

Mroczkowski, Maciej

论文摘要

我们回答了守卫者在[1]中提出的一个问题,即在Hopf纤维化下的代数结$ k $的两个交叉数字概念,一个拓扑,表示$ h(k)$,另一个来自于围绕复杂奇异性的结意见,表示$ C_ {alg}(k)$。我们表明$ c_ {alg}(k)-h(k)$可以任意大。我们还为某些结的家庭提供了上限,例如Torus结$ t(2,n)$,扭曲结及其镜像。

We answer a question posed by Fielder in [1] concerning two notions of crossing number for algebraic knots $K$ under Hopf fibration, one topological, denoted $h(K)$, the other coming from the realization of such knots around complex singularities, denoted $C_{alg}(K)$. We show that $C_{alg}(K)-h(K)$ can be arbitrarily large. We also give an upper bound for $h$ of some families of knots such as torus knots $T(2,n)$, twist knots and their mirror images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源