论文标题

极端曲线的平面极限

Flat-space Limit of Extremal Curves

论文作者

Fareghbal, Reza, Shalamzari, Mehdi Hakami, Karimi, Pedram

论文摘要

根据Ryu-takayanagi处方,边界形式综合野外理论(CFT)中子系统的纠缠熵与散装渐近抗DE保姆(ADS)的散装区域中的极端表面区域成正比。这些表面的扁平空间极限在通用情况下没有很好地定义。我们在三维的渐近广告空间中引入了一个新曲线,并具有明确的平面限制。我们通过使用新的向量发现了这条曲线,该曲线在其上消失了,并且正常与二维CFT中原始间隔的大块模块化流动。该新矢量的扁平空间极限已很好地定义,并导致相应渐近平坦的时空的宽大模块化。此外,在Rindler转换之后,这个新向量是BTZ内部地平线的正常杀伤向量。我们重现了有关Bondi-Metzner-Sachs不变的野外理论的全息纠缠熵的所有已知结果,它们对渐近平坦的空间是双重的。

According to the Ryu-Takayanagi prescription, the entanglement entropy of subsystems in the boundary conformal field theory (CFT) is proportional to the area of extremal surfaces in bulk asymptotically Anti-de Sitter (AdS) spacetimes. The flat-space limit of these surfaces is not well defined in the generic case. We introduce a new curve in the three-dimensional asymptotically AdS spacetimes with a well-defined flat-space limit. We find this curve by using a new vector, which is vanishing on it and is normal to the bulk modular flow of the original interval in the two-dimensional CFT. The flat-space limit of this new vector is well defined and gives rise to the bulk modular flow of the corresponding asymptotically flat spacetime. Moreover, after Rindler transformation, this new vector is the normal Killing vector of the BTZ inner horizon. We reproduce all known results about the holographic entanglement entropy of Bondi-Metzner-Sachs invariant field theories, which are dual to the asymptotically flat spacetimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源