论文标题

多访问边缘计算网络中的计算卸载:一种多任务学习方法

Computation Offloading in Multi-Access Edge Computing Networks: A Multi-Task Learning Approach

论文作者

Yang, Bo, Cao, Xuelin, Bassey, Joshua, Li, Xiangfang, Kroecker, Timothy, Qian, Lijun

论文摘要

多访问边缘计算(MEC)已经显示出通过将某些任务卸载到与MEC服务器(MES)集成的附近接入点(AP)的附近接入点(AP)来实现计算密集型应用程序的潜力。但是,由于MES的网络条件和有限的计算资源,移动设备和MES分配的计算资源的卸载决策可能无法有效地实现,而成本最低。在本文中,我们为MEC网络提出了一个动态卸载框架,其中上行链路非正交多访问(NOMA)用于启用多个设备通过相同的频段上传其任务。我们将卸载决策问题作为多类分类问题,并将MES计算资源分配问题作为回归问题提出。然后,基于多任务学习的前馈神经网络(MTFNN)模型旨在共同优化卸载决策和计算资源分配。数值结果表明,所提出的MTFNN在推理准确性和计算复杂性方面优于常规优化方法。

Multi-access edge computing (MEC) has already shown the potential in enabling mobile devices to bear the computation-intensive applications by offloading some tasks to a nearby access point (AP) integrated with a MEC server (MES). However, due to the varying network conditions and limited computation resources of the MES, the offloading decisions taken by a mobile device and the computational resources allocated by the MES may not be efficiently achieved with the lowest cost. In this paper, we propose a dynamic offloading framework for the MEC network, in which the uplink non-orthogonal multiple access (NOMA) is used to enable multiple devices to upload their tasks via the same frequency band. We formulate the offloading decision problem as a multiclass classification problem and formulate the MES computational resource allocation problem as a regression problem. Then a multi-task learning based feedforward neural network (MTFNN) model is designed to jointly optimize the offloading decision and computational resource allocation. Numerical results illustrate that the proposed MTFNN outperforms the conventional optimization method in terms of inference accuracy and computation complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源