论文标题

二维多层晶格SO(NC)仪表理论的渐近低温临界行为

Asymptotic low-temperature critical behavior of two-dimensional multiflavor lattice SO(Nc) gauge theories

论文作者

Bonati, Claudio, Franchi, Alessio, Pelissetto, Andrea, Vicari, Ettore

论文摘要

我们解决了具有多组分标量字段的晶格规定中的全局和局部量规非对称对称性之间的相互作用。我们考虑具有局部SO(NC)(NC)(NC> = 3)和全局O(NF)不变性的二维晶格标量非亚伯仪理论,该理论是通过部分测量最大O(NF X NC) - 合成的多组分标量表模型获得的。相应地,标量场属于coset s(nf nc-1)/so(nc),其中s(n)是n维球体。与Mermin-Wagner定理一致,具有NF> = 3的晶格SO(NC)仪表模型没有与全局非阿比亚O(NF)对称性的破坏有关的有限温度转变。但是,在零温度的极限中,它们显示出一种临界行为,其特征是相关长度与反向温度呈指数增加,类似于非线性O(n)Sigma模型。它们的通用特征通过数值有限尺寸的缩放方法研究。结果表明,渐近低温行为属于二维RP(NF-1)模型的通用类别。

We address the interplay between global and local gauge nonabelian symmetries in lattice gauge theories with multicomponent scalar fields. We consider two-dimensional lattice scalar nonabelian gauge theories with a local SO(Nc) (Nc >= 3) and a global O(Nf) invariance, obtained by partially gauging a maximally O(Nf x Nc)-symmetric multicomponent scalar model. Correspondingly, the scalar fields belong to the coset S(Nf Nc-1)/SO(Nc), where S(N) is the N-dimensional sphere. In agreement with the Mermin-Wagner theorem, these lattice SO(Nc) gauge models with Nf >= 3 do not have finite-temperature transitions related to the breaking of the global nonabelian O(Nf) symmetry. However, in the zero-temperature limit they show a critical behavior characterized by a correlation length that increases exponentially with the inverse temperature, similarly to nonlinear O(N) sigma models. Their universal features are investigated by numerical finite-size scaling methods. The results show that the asymptotic low-temperature behavior belongs to the universality class of the two-dimensional RP(Nf-1) model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源