论文标题

概念和实施工具将以FSM为模型的行业4.0环境转换为OpenAi Gym wrapper

Concept and the implementation of a tool to convert industry 4.0 environments modeled as FSM to an OpenAI Gym wrapper

论文作者

Zielinski, Kallil M. C., Teixeira, Marcelo, Ribeiro, Richardson, Casanova, Dalcimar

论文摘要

工业4.0系统对其任务的优化需求很高,无论是最大程度地降低成本,最大化的生产,甚至同步执行器以完成或加快产品的生产。这些挑战使工业环境成为应用所有现代强化学习(RL)概念的合适场景。但是,主要困难是缺乏工业环境。通过这种方式,这项工作介绍了一种工具的概念和实现,该工具使我们能够将模型的FSM模型的任何动态系统转换为开源健身包装器。之后,可以使用任何RL方法来优化任何所需的任务。在提出的工具的第一个测试中,我们显示了传统的Q学习和深度Q学习方法在两个简单的环境上运行。

Industry 4.0 systems have a high demand for optimization in their tasks, whether to minimize cost, maximize production, or even synchronize their actuators to finish or speed up the manufacture of a product. Those challenges make industrial environments a suitable scenario to apply all modern reinforcement learning (RL) concepts. The main difficulty, however, is the lack of that industrial environments. In this way, this work presents the concept and the implementation of a tool that allows us to convert any dynamic system modeled as an FSM to the open-source Gym wrapper. After that, it is possible to employ any RL methods to optimize any desired task. In the first tests of the proposed tool, we show traditional Q-learning and Deep Q-learning methods running over two simple environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源