论文标题
使用基于复合旋转的辅助任务来改善几乎没有的学习
Improving Few-Shot Learning using Composite Rotation based Auxiliary Task
论文作者
论文摘要
在本文中,我们提出了一种使用基于复合旋转的辅助任务来提高几杆分类性能的方法。很少有射击分类方法旨在产生神经网络,这些神经网络在课程中表现良好,并具有大量的培训样本和培训样本数量较少的课程。他们采用技术来使网络能够生成也非常通用的高度歧视性特征。通常,网络产生的功能的质量和通用性越好,网络在几次学习中的性能越好。我们的方法旨在通过使用自我监督的辅助任务来培训网络以产生此类功能。我们提出的基于复合旋转的辅助任务在两个级别上执行旋转,即图像内部的贴片(内部旋转)和整个图像(外部旋转)的旋转(外部旋转),并将16个旋转类中的一个分配给修改的图像。然后,我们同时训练复合旋转预测任务以及原始分类任务,这迫使网络学习高质量的通用功能,以帮助改善少量拍摄的分类性能。我们通过实验表明,我们的方法的性能比在多个基准数据集上的现有几次学习方法更好。
In this paper, we propose an approach to improve few-shot classification performance using a composite rotation based auxiliary task. Few-shot classification methods aim to produce neural networks that perform well for classes with a large number of training samples and classes with less number of training samples. They employ techniques to enable the network to produce highly discriminative features that are also very generic. Generally, the better the quality and generic-nature of the features produced by the network, the better is the performance of the network on few-shot learning. Our approach aims to train networks to produce such features by using a self-supervised auxiliary task. Our proposed composite rotation based auxiliary task performs rotation at two levels, i.e., rotation of patches inside the image (inner rotation) and rotation of the whole image (outer rotation) and assigns one out of 16 rotation classes to the modified image. We then simultaneously train for the composite rotation prediction task along with the original classification task, which forces the network to learn high-quality generic features that help improve the few-shot classification performance. We experimentally show that our approach performs better than existing few-shot learning methods on multiple benchmark datasets.