论文标题

通过单组分非平稳信号对脑电图的参数建模

Parametric Modeling of EEG by Mono-Component Non-Stationary Signal

论文作者

Sircar, Pradip, Sharma, Rakesh Kumar

论文摘要

在本文中,我们提出了一种新型的脑电图(EEG)信号参数建模的方法。已经证明,脑电图是一个单组分的非平稳信号,其幅度和相位(频率)可以表示为时间函数。我们提出了详细的策略,以高精度估算所提出模型的参数。仿真研究说明了模型拟合的过程。描述了模型特征的某些解释。

In this paper, we propose a novel approach for parametric modeling of electroencephalographic (EEG) signals. It is demonstrated that the EEG signal is a mono-component non-stationary signal whose amplitude and phase (frequency) can be expressed as functions of time. We present detailed strategy for estimation of the parameters of the proposed model with high accuracy. Simulation study illustrates the procedure of model fitting. Some interpretation of the characteristic features of the model is described.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源