论文标题

GCD和LCM-SUM的平均值估计值

Mean value estimates of gcd and lcm-sums

论文作者

Chaubey, Sneha, Goel, Shivani

论文摘要

我们平均研究广义GCD和LCM函数的分布。由$(m,n)_b $表示的广义GCD函数是最大的$ b $ th power除数,$ m $和$ n $。同样,由$ [m,n] _b $表示的广义LCM函数是最小的$ b $ th power多$ m $和$ n $的电源。我们为$(m,n)_b $的算术,几何和谐波均值的平均顺序得出渐近公式。此外,我们还推断出具有错误术语的渐近公式,用于$(n_1,n_2,\ cdots,n_k)_b $和$ [n_1,n_1,n_2,\ cdots,n_k] _b $在一组晶格上,从而将以前的某些工作概括为GCD和LCM-S-Sum-Sum-Sum-sum exteres。

We study the distribution of the generalized gcd and lcm functions on average. The generalized gcd function, denoted by $(m,n)_b$, is the largest $b$-th power divisor common to $m$ and $n$. Likewise, the generalized lcm function, denoted by $[m,n]_b$, is the smallest $b$-th power multiple common to $m$ and $n$. We derive asymptotic formulas for the average order of the arithmetic, geometric, and harmonic means of $(m,n)_b$. Additionally, we also deduce asymptotic formulas with error terms for the means of $(n_1,n_2,\cdots, n_k)_b$, and $[n_1,n_2,\cdots, n_k]_b$ over a set of lattice points, thereby generalizing some of the previous work on gcd and lcm-sum estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源