论文标题

强大的产品马尔可夫量化

Robust Product Markovian Quantization

论文作者

Rudd, Ralph, McWalter, Thomas A., Kienitz, Joerg, Platen, Eckhard

论文摘要

递归边际量化(RMQ)允许构建最佳离散网格,以近似于D量二维中随机微分方程的溶液。与真正最佳的量化器相比,产品马尔可夫量化(PMQ)通过递归构建产品量化器来减少此问题。但是,PMQ算法中使用的标准Newton-Raphson方法遭受数值不稳定性,抑制了广泛的采用,尤其是用于校准。通过直接指定要在每个时间步骤进行量化的随机变量,我们表明可以将PMQ和RMQ在一维中表示为标准矢量量化。这种重新制定允许在适应性和健壮的程序中应用加速的劳埃德算法。此外,在随机波动率模型的情况下,我们通过使用挥发性或方差过程的高阶更新来扩展PMQ算法。我们使用SABR模型说明了使用Heston模型和更多外来产品的欧洲选择的技术。

Recursive marginal quantization (RMQ) allows the construction of optimal discrete grids for approximating solutions to stochastic differential equations in d-dimensions. Product Markovian quantization (PMQ) reduces this problem to d one-dimensional quantization problems by recursively constructing product quantizers, as opposed to a truly optimal quantizer. However, the standard Newton-Raphson method used in the PMQ algorithm suffers from numerical instabilities, inhibiting widespread adoption, especially for use in calibration. By directly specifying the random variable to be quantized at each time step, we show that PMQ, and RMQ in one dimension, can be expressed as standard vector quantization. This reformulation allows the application of the accelerated Lloyd's algorithm in an adaptive and robust procedure. Furthermore, in the case of stochastic volatility models, we extend the PMQ algorithm by using higher-order updates for the volatility or variance process. We illustrate the technique for European options, using the Heston model, and more exotic products, using the SABR model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源