论文标题
均匀动量区域和高雷诺数中的内部剪切层的自我维持的过程理论
A self-sustaining process theory for uniform momentum zones and internal shear layers in high Reynolds number shear flows
论文作者
论文摘要
在壁结合的剪切流中产生的许多确切的相干状态(EC)在极端的雷诺数上具有渐近结构,其中有效的雷诺数数字是o(1)。因此,这些粘性的EC不适合用于远离墙壁上一定会在平均值中无粘性的准共晶结构的合适候选物。具体而言,粘性EC不能说明惯性结构域的奇异性,在该范围内,该流量自组织成均匀的动量区域(UMZ),被内部剪切层隔开,而瞬时的流向速度会形成楼梯状的轮廓。在这项研究中,进行了大型RE渐近分析,以探索嵌入式剪切层的三维,短流和跨度波长的不稳定性的潜力,以维持空间分布的阵列,具有许多较大的大规模,有效地,有效地固定流动的流动卷。与其他自我维持的过程理论相反,卷足够强大,可以差异化背景剪切流,从而为umzs的形成和维护提供了机械解释,并尊重平均动力学的前阶平衡结构。
Many exact coherent states (ECS) arising in wall-bounded shear flows have an asymptotic structure at extreme Reynolds number Re in which the effective Reynolds number governing the streak and roll dynamics is O(1). Consequently, these viscous ECS are not suitable candidates for quasi-coherent structures away from the wall that necessarily are inviscid in the mean. Specifically, viscous ECS cannot account for the singular nature of the inertial domain, where the flow self-organizes into uniform momentum zones (UMZs) separated by internal shear layers and the instantaneous streamwise velocity develops a staircase-like profile. In this investigation, a large-Re asymptotic analysis is performed to explore the potential for a three-dimensional, short streamwise- and spanwise-wavelength instability of the embedded shear layers to sustain a spatially-distributed array of much larger-scale, effectively inviscid streamwise roll motions. In contrast to other self-sustaining process theories, the rolls are sufficiently strong to differentially homogenize the background shear flow, thereby providing a mechanistic explanation for the formation and maintenance of UMZs and interlaced shear layers that respects the leading-order balance structure of the mean dynamics.