论文标题

主动合奏学习偏振合成孔径雷达图像分类

Active Ensemble Deep Learning for Polarimetric Synthetic Aperture Radar Image Classification

论文作者

Liu, Sheng-Jie, Luo, Haowen, Shi, Qian

论文摘要

尽管深度学习在图像分类任务中取得了巨大的成功,但其性能仍遵守培训样本的数量和质量。为了分类极化合成孔径雷达(POLSAR)图像,几乎不可能从视觉解释中注释图像。因此,遥感科学家迫切需要在很少的培训样本的条件下开发用于Polsar图像分类的新技术。在这封信中,我们利用了积极学习的优势,并提出了用于Polsar图像分类的主动集合深度学习(AEDL)。我们首先表明,深度学习模型的快照的预测标签中只有35%完全相同。快照之间的分歧是不可忽略的。从多视图学习的角度来看,快照一起成为评估未标记实例重要性的好委员会。使用快照委员会介绍了未标记数据的信息,与标准的主动学习策略相比,拟议的AEDL在两个真实的Polsar图像上取得了更好的性能。与Breaking ties主动学习和Flevoland数据集的随机选择相比,它仅具有相同的分类精度,仅86%和55%的训练样本。

Although deep learning has achieved great success in image classification tasks, its performance is subject to the quantity and quality of training samples. For classification of polarimetric synthetic aperture radar (PolSAR) images, it is nearly impossible to annotate the images from visual interpretation. Therefore, it is urgent for remote sensing scientists to develop new techniques for PolSAR image classification under the condition of very few training samples. In this letter, we take the advantage of active learning and propose active ensemble deep learning (AEDL) for PolSAR image classification. We first show that only 35\% of the predicted labels of a deep learning model's snapshots near its convergence were exactly the same. The disagreement between snapshots is non-negligible. From the perspective of multiview learning, the snapshots together serve as a good committee to evaluate the importance of unlabeled instances. Using the snapshots committee to give out the informativeness of unlabeled data, the proposed AEDL achieved better performance on two real PolSAR images compared with standard active learning strategies. It achieved the same classification accuracy with only 86% and 55% of the training samples compared with breaking ties active learning and random selection for the Flevoland dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源