论文标题

使用基于物理的数据增强的可推广锥束CT食道分割

Generalizable Cone Beam CT Esophagus Segmentation Using Physics-Based Data Augmentation

论文作者

Alam, Sadegh R, Li, Tianfang, Zhang, Pengpeng, Zhang, Si-Yuan, Nadeem, Saad

论文摘要

食道的自动分割在图像指导/适应性放射疗法的肺癌中至关重要,以最大程度地减少辐射诱导的毒性,例如急性食道炎。我们开发了一种基于语义物理的数据增强方法,用于使用3D卷积神经网络在计划CT(PCT)和锥形束CT(CBCT)中分割食道。 191个具有来自四个独立数据集的PCT和CBCT的病例被用于训练经过修改的3D-UNET体系结构,其多目标损耗函数专为软性组织器官(例如食管)设计。使用功率定律自适应直方图均衡方法从第1周的CBCT中提取散射伪影和噪声,并诱导了相应的PCT,然后使用CBCT重建参数进行了重建。此外,我们利用基于物理的人工制品诱导的PCT来推动实际每周CBCT中的食道分割。使用几何骰子和Hausdorff距离以及使用平均食管剂量和D5CC来评估分割。由于基于物理学的数据增强,我们的模型仅在合成CBCT上进行了训练,并且足够坚固且可推广,还可以在PCT和CBCT上产生最先进的结果,实现了0.81和0.74的骰子重叠。我们基于物理的数据增强涵盖了患者CBCT/PCT数据的逼真的噪声/人工制度谱,并且可以跨越跨模态,具有提高治疗设置和反应分析的准确性的潜力。

Automated segmentation of esophagus is critical in image guided/adaptive radiotherapy of lung cancer to minimize radiation-induced toxicities such as acute esophagitis. We developed a semantic physics-based data augmentation method for segmenting esophagus in both planning CT (pCT) and cone-beam CT (CBCT) using 3D convolutional neural networks. 191 cases with their pCT and CBCTs from four independent datasets were used to train a modified 3D-Unet architecture with a multi-objective loss function specifically designed for soft-tissue organs such as esophagus. Scatter artifacts and noise were extracted from week 1 CBCTs using power law adaptive histogram equalization method and induced to the corresponding pCT followed by reconstruction using CBCT reconstruction parameters. Moreover, we leverage physics-based artifact induced pCTs to drive the esophagus segmentation in real weekly CBCTs. Segmentations were evaluated using geometric Dice and Hausdorff distance as well as dosimetrically using mean esophagus dose and D5cc. Due to the physics-based data augmentation, our model trained just on the synthetic CBCTs was robust and generalizable enough to also produce state-of-the-art results on the pCTs and CBCTs, achieving 0.81 and 0.74 Dice overlap. Our physics-based data augmentation spans the realistic noise/artifact spectrum across patient CBCT/pCT data and can generalize well across modalities with the potential to improve the accuracy of treatment setup and response analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源