论文标题

在当地紧凑型组的密集亚组上随机步行

Random walks on dense subgroups of locally compact groups

论文作者

Björklund, Michael, Hartman, Yair, Oppelmayer, Hanna

论文摘要

令$γ$为一个可计数的离散组,$ h $ a lcsc完全断开的组,$ρ:γ\ rightarrow h $ a是具有密集图像的同构。我们开发了一种一般且明确的技术,为每一个紧凑的开放子组$ l <h $和bi- $ l $ invariant的概率度量$θ$上的$ h $,fufstenberg ovelstenberg oveltization $θ$ $θ$,以便$(h,θ)$的poisson边界是$τ$ $τ$ -Bungary。除其他外,这项技术使我们能够在某些灯塔组和可解决的baumslag-solitar群组上构建有限支撑的随机步行的示例,这些小组的泊松边界是典型的,但对于任何$ p \ geq 1 $ by bader-muchnik的猜测。此外,我们举了一个可计数的离散组$γ$的示例,以及$γ$上的两个扩展概率度量$τ_1$和$τ_2$,使得$(γ,τ_1)$的边界熵光谱是一个间隔,而边界熵谱是$(γ,τ_2)$的边界熵谱。

Let $Γ$ be a countable discrete group, $H$ a lcsc totally disconnected group and $ρ: Γ\rightarrow H$ a homomorphism with dense image. We develop a general and explicit technique which provides, for every compact open subgroup $L < H$ and bi-$L$-invariant probability measure $θ$ on $H$, a Furstenberg discretization $τ$ of $θ$ such that the Poisson boundary of $(H,θ)$ is a $τ$-boundary. Among other things, this technique allows us to construct examples of finitely supported random walks on certain lamplighter groups and solvable Baumslag-Solitar groups, whose Poisson boundaries are prime, but not $L^p$-irreducible for any $p \geq 1$, answering a conjecture of Bader-Muchnik in the negative. Furthermore, we give an example of a countable discrete group $Γ$ and two spread-out probability measures $τ_1$ and $τ_2$ on $Γ$ such that the boundary entropy spectrum of $(Γ,τ_1)$ is an interval, while the boundary entropy spectrum of $(Γ,τ_2)$ is a Cantor set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源