论文标题

物理摆模型:分数微分方程和内存效果

Physical pendulum model: Fractional differential equation and memory effects

论文作者

Gonçalves, L. N., Fernandes, J. C., Ferraz, A., Silva, A. G., Sebastião, P. J.

论文摘要

提出了三个摆运动模型的详细分析。惯性效应,自我振荡和记忆以及非恒定矩,磁滞和负面阻尼的非恒定矩被证明是对自由摆振荡制度的全面描述所必需的。还分析和讨论了非常高的初始振幅,滚子轴承轴,阻力和阴影几何形状的摩擦的影响。由分数差分方程组成的模型既可以提供最佳的解释,也提供了最适合实验性高分辨率的最佳解释和从标准动作相机视频中收集的长期数据。

A detailed analysis of three pendular motion models is presented. Inertial effects, self-oscillation, and memory, together with non-constant moment of inertia, hysteresis and negative damping are shown to be required for the comprehensive description of the free pendulum oscillatory regime. The effects of very high initial amplitudes, friction in the roller bearing axle, drag, and pendulum geometry are also analysed and discussed. The model that consists of a fractional differential equation provides both the best explanation of, and the best fits to, experimental high resolution and long-time data gathered from standard action-camera videos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源