论文标题
来自分子内和分子间TADF OLED的自旋和电压依赖性发射
Spin- and Voltage-dependent emission from Intra- and Intermolecular TADF OLEDs
论文作者
论文摘要
基于热活化的延迟荧光(TADF)的有机光发射二极管(OLEDS)利用单线和三重态之间的能量分裂较小的分子系统。这可以在分子内电荷转移状态下通过近乎正交的供体和受体部分的分子转移状态,也可以在单个供体和受体材料的合适组合之间形成的分子间移科态。在这里,我们研究了4,4' - (9H,9'H- [3,3'--甲虫] -9,9'-diyl)bis(3-(三氟甲基)苯硝基硝基)(PCNBCZOCF3)(PCNBCZOCF3),这表现出了分子内TADF,但也可以形成结合IMPLEX状态的状态。 4,4',4'' - Tris [苯基(M-甲基)氨基]三苯胺(M-MTDATA)。橙色发射离心型OLEDS还从分子内发射极的天蓝色发射,强度可以由电压控制。我们将检测到的磁共振(ELDMR)应用电致发光,以研究操作设备中的热激活的自旋依赖性三重态。因此,我们可以研究参与OLED运行的中间激发态,并得出基于分子内和分子间TADF的相应活化能。此外,我们对三胞胎波函数范围的估计值较低> 1.2 nm。光致发光检测到的磁共振(PLDMR)揭示了光学激发薄膜中分子三联体的群体。总体而言,我们的发现使我们能够全面地描绘了来自分子内和分子间TADF OLED的自旋依赖性发射。
Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) utilize molecular systems with a small energy splitting between singlet and triplet states. This can either be realized in intramolecular charge transfer states of molecules with near-orthogonal donor and acceptor moieties or in intermolecular exciplex states formed between a suitable combination of individual donor and acceptor materials. Here, we investigate 4,4'-(9H,9'H-[3,3'-bicarbazole]-9,9'-diyl)bis(3-(trifluoromethyl) benzonitrile) (pCNBCzoCF3), which shows intramolecular TADF but can also form exciplex states in combination with 4,4',4''-tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA). Orange emitting exciplex-based OLEDs additionally generate a sky-blue emission from the intramolecular emitter with an intensity that can be voltage-controlled. We apply electroluminescence detected magnetic resonance (ELDMR) to study the thermally activated spin-dependent triplet to singlet up-conversion in operating devices. Thereby, we can investigate intermediate excited states involved in OLED operation and derive the corresponding activation energy for both, intra- and intermolecular based TADF. Furthermore, we give a lower estimate for the extent of the triplet wavefunction to be >1.2 nm. Photoluminescence detected magnetic resonance (PLDMR) reveals the population of molecular triplets in optically excited thin films. Overall, our findings allow us to draw a comprehensive picture of the spin-dependent emission from intra- and intermolecular TADF OLEDs.