论文标题

在Furstenberg套装的包装上

On the packing dimension of Furstenberg sets

论文作者

Shmerkin, Pablo

论文摘要

我们证明,如果$α\在(0,1/2] $中,则一组$ e \ subset \ subset \ mathbb {r}^2 $的包装维度,其中存在一组尺寸$ 1 $的行$ e $ in Dimension $ \geα$中的$ 1 $至少是$ 1/2+α+c(live)$ c(live)$α+c(α)的$ c(某些$ c(某些)$ c( $α$ -FURSTENBERG,即具有Hausdorff dimension $ \geα$与T. Orponen的较早结果的相交,这为$ -Furstenberg的包装维度提供了改进。线条,并表明$α$ -FURSTENBERG集合的尺度类似于一组接近$ 1/2+α$的尺寸,如果存在,则相当稀疏。

We prove that if $α\in (0,1/2]$, then the packing dimension of a set $E\subset\mathbb{R}^2$ for which there exists a set of lines of dimension $1$ intersecting $E$ in dimension $\ge α$ is at least $1/2+α+c(α)$ for some $c(α)>0$. In particular, this holds for $α$-Furstenberg sets, that is, sets having intersection of Hausdorff dimension $\geα$ with at least one line in every direction. Together with an earlier result of T. Orponen, this provides an improvement for the packing dimension of $α$-Furstenberg sets over the "trivial" estimate for all values of $α\in (0,1)$. The proof extends to more general families of lines, and shows that the scales at which an $α$-Furstenberg set resembles a set of dimension close to $1/2+α$, if they exist, are rather sparse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源