论文标题

深度神经网络幻想的SAR图像:从预训练的模型到端到端培训策略

SAR Image Despeckling by Deep Neural Networks: from a pre-trained model to an end-to-end training strategy

论文作者

Dalsasso, Emanuele, Yang, Xiangli, Denis, Loïc, Tupin, Florence, Yang, Wen

论文摘要

减少斑点是合成孔径雷达(SAR)图像的一个长期主题。已经提出了许多不同的方案,以恢复强度SAR图像。在不同可能的方法中,基于卷积神经网络(CNN)的方法最近已证明可以达到SAR图像恢复的最新性能。 CNN训练需要良好的培训数据:许多无斑点 /斑点损坏的图像。考虑到无斑点图像的固有稀缺性,这是SAR应用程序中的问题。为了解决这个问题,本文分析了人们可以采用的不同策略,具体取决于人们希望执行的斑点删除任务以及SAR数据的多颞堆栈的可用性。第一个策略采用了CNN模型,该模型训练了从自然图像中去除添加剂的白色高斯噪声,并将其用于最近提议的SAR Speckle删除框架:Mulog(Mulog(多通道对数)与高斯denoising)。没有对SAR图像进行培训,可以将网络容易应用于减少斑点任务。第二种策略考虑了一种新颖的方法来构建训练CNN模型所需的无斑点SAR图像数据集。最后,还分析了一种混合方法:用于去除无斑点SAR图像的CNN训练了添加剂白色高斯噪声。将所提出的方法与其他最先进的散布滤波器进行了比较,以评估DeNoising的质量并讨论不同策略的利弊。除论文外,我们还可以提供受过训练的网络的权重,以允许其他研究人员使用。

Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) images. Many different schemes have been proposed for the restoration of intensity SAR images. Among the different possible approaches, methods based on convolutional neural networks (CNNs) have recently shown to reach state-of-the-art performance for SAR image restoration. CNN training requires good training data: many pairs of speckle-free / speckle-corrupted images. This is an issue in SAR applications, given the inherent scarcity of speckle-free images. To handle this problem, this paper analyzes different strategies one can adopt, depending on the speckle removal task one wishes to perform and the availability of multitemporal stacks of SAR data. The first strategy applies a CNN model, trained to remove additive white Gaussian noise from natural images, to a recently proposed SAR speckle removal framework: MuLoG (MUlti-channel LOgarithm with Gaussian denoising). No training on SAR images is performed, the network is readily applied to speckle reduction tasks. The second strategy considers a novel approach to construct a reliable dataset of speckle-free SAR images necessary to train a CNN model. Finally, a hybrid approach is also analyzed: the CNN used to remove additive white Gaussian noise is trained on speckle-free SAR images. The proposed methods are compared to other state-of-the-art speckle removal filters, to evaluate the quality of denoising and to discuss the pros and cons of the different strategies. Along with the paper, we make available the weights of the trained network to allow its usage by other researchers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源