论文标题
$ω_c^0 \toπ^+ω(2012)^ - \toπ^+(\ bar {k}ξ)^ - $ $ $ $ $和$π^+(\ bar {k}π)
Theoretical study of the $Ω(2012)$ state in the $Ω_c^0 \to π^+ Ω(2012)^- \to π^+ (\bar{K}Ξ)^-$ and $π^+ (\bar{K}Ξπ)^-$ decays
论文作者
论文摘要
我们报告了新观察到的$ω(2012)$共振的理论研究,以$ω_c^0 \toπ^+ \ \ bar {k}ξ^*(1530)(ηΩ)(ηΩ) $ \ bar {k}ξ^*(1530)$和$ηΩ$对的交互。 The weak interaction part is assumed to be dominated by the charm quark decay process: $c(ss) \to (s + u + \bar{d})(ss)$, while the hadronization part takes place between the $sss$ cluster from the weak decay and a quark-antiquark pair with the quantum numbers $J^{PC} = 0^{++}$ of the vacuum, produces a pair of $ \ bar {k}ξ^*(1530)$和$ηΩ$。因此,最终的$ \ bar {k}ξ^*(1530)$和$ηΩ$状态为纯isospin $ i = 0 $组合,以及$ω_c^0 \ toπ^+ \ bar {k} at {k}ξ^*(1530)(1530)(1530)(1530)(1530)(ηΩ) $ω(2012)$共振。借助手性统一方法中描述的最终状态互动,直到任意归一化,可以计算最终状态的不变质量分布,前提是假设$ω(2012)$ j^p = 3/2^ - $是$ \ bar的$ \ bar^} $ \ bar { $ s $ - 波和$ \ bar {k}ξ$ in $ d $ - 波。我们还计算了比率,$ r^{\ bar {k}ξπ} _ {\ bar {k}ξ} = {\ rm br} [\ rm br} [ω__c^0 \toπ^+ω(2012) π^+ω(2012)^ - \toπ^+(\ bar {k}ξ)^ - $]。所提出的机制可以提供有关$ω(2012)$的性质的有价值的信息,并且可以原则上通过未来的实验来测试。
We report on a theoretical study of the newly observed $Ω(2012)$ resonance in the nonleptonic weak decays of $Ω_c^0 \to π^+ \bar{K}Ξ^*(1530) (ηΩ) \to π^+ (\bar{K}Ξ)^-$ and $π^+ (\bar{K}Ξπ)^-$ via final-state interactions of the $\bar{K}Ξ^*(1530)$ and $ηΩ$ pairs. The weak interaction part is assumed to be dominated by the charm quark decay process: $c(ss) \to (s + u + \bar{d})(ss)$, while the hadronization part takes place between the $sss$ cluster from the weak decay and a quark-antiquark pair with the quantum numbers $J^{PC} = 0^{++}$ of the vacuum, produces a pair of $\bar{K}Ξ^*(1530)$ and $ηΩ$. Accordingly, the final $\bar{K}Ξ^*(1530)$ and $ηΩ$ states are in pure isospin $I= 0$ combinations, and the $Ω_c^0 \to π^+ \bar{K}Ξ^*(1530)(ηΩ) \to π^+ (\bar{K}Ξ)^-$ decay is an ideal process to study the $Ω(2012)$ resonance. With the final-state interaction described in the chiral unitary approach, up to an arbitrary normalization, the invariant mass distributions of the final state are calculated, assuming that the $Ω(2012)$ resonance with spin-parity $J^P = 3/2^-$ is a dynamically generated state from the coupled channels interactions of the $\bar{K}Ξ^*(1530)$ and $ηΩ$ in $s$-wave and $\bar{K}Ξ$ in $d$-wave. We also calculate the ratio, $R^{\bar{K}Ξπ}_{\bar{K}Ξ} = {\rm Br}[Ω_c^0 \to π^+ Ω(2012)^- \to π^+ (\bar{K}Ξπ)^-] / {\rm Br}[Ω_c^0 \to π^+ Ω(2012)^- \to π^+ (\bar{K}Ξ)^-$]. The proposed mechanism can provide valuable information on the nature of the $Ω(2012)$ and can in principle be tested by future experiments.