论文标题
在$ pq $ - 折叠的定期封面上
On $pq$-fold regular covers of the projective line
论文作者
论文摘要
令$ p $和$ q $为奇数。在本文中,我们研究了投影线的非亚伯PQ折叠覆盖物,确定某些特殊情况的代数模型,并提供相应的Jacobian品种的一般同学分解。我们还像以前一样对紧凑的Riemann表面的一维家族进行分类和描述。
Let $p$ and $q$ be odd prime numbers. In this paper we study non-abelian pq-fold regular covers of the projective line, determine algebraic models for some special cases and provide a general isogeny decomposition of the corresponding Jacobian varieties. We also give a classification and description of the one-dimensional families of compact Riemann surfaces as before.