论文标题

差异集中的多元多项式值

Multivariate Polynomial Values in Difference Sets

论文作者

Doyle, John R., Rice, Alex

论文摘要

对于$ \ ell \ geq 2 $和$ h \ in \ mathbb {z} [x_1,\ dots,x _ {\ ell}] $ $ k \ geq 2 $,我们表明,每个集合$ a \ subseteq \ subseteq \ subseteq \ subseteq \ subseteq \ {1,2,\ dots,n \ dots,n \ n \ n \ n \ n \ n \ n \ n \ n nonyzero差异$ h(\ mathbb {z}^{\ ell})$满足$ | a | \ ll_h ne^ne^{ - c(\ log n)^μ} $,其中$ c = c(h)> 0 $,$μ= [(k-1)提供的$ h(\ mathbb {z}^{\ ell})$包含每个自然数的倍数,$ h $满足某些非语言条件。我们还详细探讨了这些条件,利用了代数几何形状的各种工具。

For $\ell\geq 2$ and $h\in \mathbb{Z}[x_1,\dots,x_{\ell}]$ of degree $k\geq 2$, we show that every set $A\subseteq \{1,2,\dots,N\}$ lacking nonzero differences in $h(\mathbb{Z}^{\ell})$ satisfies $|A|\ll_h Ne^{-c(\log N)^μ}$, where $c=c(h)>0$, $μ=[(k-1)^2+1]^{-1}$ if $\ell=2$, and $μ=1/2$ if $\ell\geq 3$, provided $h(\mathbb{Z}^{\ell})$ contains a multiple of every natural number and $h$ satisfies certain nonsingularity conditions. We also explore these conditions in detail, drawing on a variety of tools from algebraic geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源