论文标题
搜索与重力波事件相关的电子 - 静脉内曲霉GW150914,GW151012,GW151226,GW170104,GW170608,GW170814,GW170814和GW170817在Daya Bay
Search For Electron-Antineutrinos Associated With Gravitational-Wave Events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay
论文作者
论文摘要
提供中微子发射与重力波(GW)爆发之间可能存在联系,这对于我们对黑洞或中子恒星合并时发生的物理过程的理解很重要。在Daya湾实验中,使用从2011年12月到2017年8月收集的数据,已经为电子 - 抗雷素信号进行了搜索,该信号与检测到的GW事件相吻合,包括GW150914,GW151012,GW151226,GW151226,GW170104,GW170104,GW170608,GW170608,GW1708170817080808080808080808080808080808097970岁。我们使用了$ \ mathrm {\ pm 10〜S} $的三个时间窗口,$ \ mathrm {\ pm 500〜s} $,以及$ \ mathrm {\ pm pm 1000〜S} $相对于GW事件的发生,以及1.8至100 mev的中性能量范围,以搜索CorrealIno中的中性范围。检测到的电子 - 抗细胞候选者与所有三个时间窗口的预期背景速率一致。假设单色光谱,我们发现了$(1.13〜-〜2.44)的电子 - 抗氨基耐药性上限(90%置信水平)\ times 10^{11}〜\ rm {cm^{ - 2}} $ at 5 meV至$ 8.0 \ \ 8.0 \ \ \ \ \ \ 8.0 \ \ \ \ \ \ \ rmmmmmmmmmmm时间窗口。在Fermi-Dirac频谱的假设下,发现上限为$(5.4〜-〜7.0)\ times 10^{9}〜\ rm {cm^{ - 2}} $,对于三个时间窗口。
Providing a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using data collected from December 2011 to August 2017, a search has been performed for electron-antineutrino signals coinciding with detected GW events, including GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817. We used three time windows of $\mathrm{\pm 10~s}$, $\mathrm{\pm 500~s}$, and $\mathrm{\pm 1000~s}$ relative to the occurrence of the GW events, and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates. The detected electron-antineutrino candidates are consistent with the expected background rates for all the three time windows. Assuming monochromatic spectra, we found upper limits (90% confidence level) on electron-antineutrino fluence of $(1.13~-~2.44) \times 10^{11}~\rm{cm^{-2}}$ at 5 MeV to $8.0 \times 10^{7}~\rm{cm^{-2}}$ at 100 MeV for the three time windows. Under the assumption of a Fermi-Dirac spectrum, the upper limits were found to be $(5.4~-~7.0)\times 10^{9}~\rm{cm^{-2}}$ for the three time windows.