论文标题
Hurewicz空间的星级版本
Star versions of Hurewicz spaces
论文作者
论文摘要
据说一个空格$ x $具有固定星Hurewicz的属性,如果对于每个非空子集$ a $ a $ a $ a $ x $和每个序列$(\ nathcal {u} _n:n \ in \ nathbb {n})$ sets $ sets $ in \ x $打开的$ x $,则每个$ n \ in \ n \ in \ mathbb n $ cop for \ mathbb n $ cop for \ Mathcal {u} _n $,有一个序列$(\ Mathcal {V} _n:n \ in \ Mathbb {n})$,以至于每个$ n \ in \ in \ int \ mathbb {n} $,$ \ m n} $,$ \ mathcal {v} _n $是$ n是$ n是$ n $ \ $ \ for $ \ for $ \ for $ \ for a $,$ x \ in {\ rm st}(\ cup \ mathcal {v} _n,\ mathcal {u} _n)$ for landibly lasty $ n $,\ Mathcal {u} _n)$。在本文中,我们研究了SET Star Hurewicz,Setake star star star star of star of star of star of star of star of star star of star star ofst star star star hurewicz和其他相关涵盖特性之间的关系,并研究了这些拓扑空间的拓扑特性。
A space $X$ is said to have the set star Hurewicz property if for each nonempty subset $A$ of $X$ and each sequence $(\mathcal{U}_n: n \in \mathbb{N})$ of sets open in $X$ such that for each $n\in \mathbb N$, $\overline{A} \subset \cup \mathcal{U}_n$, there is a sequence $(\mathcal{V}_n: n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $\mathcal{V}_n$ is a finite subset of $\mathcal{U}_n$ and for each $x \in A$, $x \in {\rm St}(\cup \mathcal{V}_n, \mathcal{U}_n)$ for all but finitely many $n$. In this paper, we investigate the relationships among set star Hurewicz, set strongly star Hurewicz and other related covering properties and study the topological properties of these topological spaces.