论文标题

Hurewicz空间的星级版本

Star versions of Hurewicz spaces

论文作者

Singh, Sumit, Kocinac, Ljubisa D. R.

论文摘要

据说一个空格$ x $具有固定星Hurewicz的属性,如果对于每个非空子集$ a $ a $ a $ a $ x $和每个序列$(\ nathcal {u} _n:n \ in \ nathbb {n})$ sets $ sets $ in \ x $打开的$ x $,则每个$ n \ in \ n \ in \ mathbb n $ cop for \ mathbb n $ cop for \ Mathcal {u} _n $,有一个序列$(\ Mathcal {V} _n:n \ in \ Mathbb {n})$,以至于每个$ n \ in \ in \ int \ mathbb {n} $,$ \ m n} $,$ \ mathcal {v} _n $是$ n是$ n是$ n $ \ $ \ for $ \ for $ \ for $ \ for a $,$ x \ in {\ rm st}(\ cup \ mathcal {v} _n,\ mathcal {u} _n)$ for landibly lasty $ n $,\ Mathcal {u} _n)$。在本文中,我们研究了SET Star Hurewicz,Setake star star star star of star of star of star of star of star of star star of star star ofst star star star hurewicz和其他相关涵盖特性之间的关系,并研究了这些拓扑空间的拓扑特性。

A space $X$ is said to have the set star Hurewicz property if for each nonempty subset $A$ of $X$ and each sequence $(\mathcal{U}_n: n \in \mathbb{N})$ of sets open in $X$ such that for each $n\in \mathbb N$, $\overline{A} \subset \cup \mathcal{U}_n$, there is a sequence $(\mathcal{V}_n: n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $\mathcal{V}_n$ is a finite subset of $\mathcal{U}_n$ and for each $x \in A$, $x \in {\rm St}(\cup \mathcal{V}_n, \mathcal{U}_n)$ for all but finitely many $n$. In this paper, we investigate the relationships among set star Hurewicz, set strongly star Hurewicz and other related covering properties and study the topological properties of these topological spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源