论文标题
无监督的深度表示学习和Polsar图像的几乎没有射击分类
Unsupervised Deep Representation Learning and Few-Shot Classification of PolSAR Images
论文作者
论文摘要
在过去几年中,深度学习和卷积神经网络(CNN)在极化合成孔径雷达(Polsar)图像分类方面取得了进展。但是,尚未解决一个至关重要的问题,即CNN对大量标记的样品的要求与Polsar图像的人类注释不足。众所周知,遵循监督的学习范式可能会导致培训数据的过度拟合,并且缺乏Polsar图像的监督信息无疑会加剧这个问题,这极大地影响了在大规模应用中基于CNN的分类器的概括性能。为了解决这个问题,在本文中,首次探索了通过卷积架构从未标记的Polsar数据中学习可转移表示。具体而言,为无监督的深层Polsar表示学习和很少的射击分类而提出了Polsar量的对比学习网络(PCLNET)。与光学处理方法的利用不同,构建了多样性刺激机制,以缩小光学和POLSAR之间的应用差距。除了传统的监督方法之外,PCLNET还基于实例歧视的代理目标开发一个无监督的预训练阶段,以从未标记的POLSAR数据中学习有用的表示形式。获取的表示形式转移到下游任务,即几乎没有Polsar分类。在两个广泛使用的POLSAR基准数据集上的实验证实了PCLNET的有效性。此外,这项工作可能会启发如何有效利用大量未标记的Polsar数据来减轻基于CNN的人类注释方法的贪婪需求。
Deep learning and convolutional neural networks (CNNs) have made progress in polarimetric synthetic aperture radar (PolSAR) image classification over the past few years. However, a crucial issue has not been addressed, i.e., the requirement of CNNs for abundant labeled samples versus the insufficient human annotations of PolSAR images. It is well-known that following the supervised learning paradigm may lead to the overfitting of training data, and the lack of supervision information of PolSAR images undoubtedly aggravates this problem, which greatly affects the generalization performance of CNN-based classifiers in large-scale applications. To handle this problem, in this paper, learning transferrable representations from unlabeled PolSAR data through convolutional architectures is explored for the first time. Specifically, a PolSAR-tailored contrastive learning network (PCLNet) is proposed for unsupervised deep PolSAR representation learning and few-shot classification. Different from the utilization of optical processing methods, a diversity stimulation mechanism is constructed to narrow the application gap between optics and PolSAR. Beyond the conventional supervised methods, PCLNet develops an unsupervised pre-training phase based on the proxy objective of instance discrimination to learn useful representations from unlabeled PolSAR data. The acquired representations are transferred to the downstream task, i.e., few-shot PolSAR classification. Experiments on two widely-used PolSAR benchmark datasets confirm the validity of PCLNet. Besides, this work may enlighten how to efficiently utilize the massive unlabeled PolSAR data to alleviate the greedy demands of CNN-based methods for human annotations.