论文标题
使用差分不平等
Hölder continuity for the $p$-Laplace equation using a differential inequality
论文作者
论文摘要
我们研究Hölder的连续性,用于$ p $ laplace方程的解决方案。这是通过涉及普通微分不平等的方法建立的,与De Giorgi-Nash-Moser定理的经典证明相反,该方法利用通过同心球对不平等的迭代进行了迭代。
We study Hölder continuity for solutions of the $p$-Laplace equation. This is established through a method involving an ordinary differential inequality, in contrast to the classical proof of the De Giorgi-Nash-Moser Theorem which uses iteration of an inequality through concentric balls.