论文标题

使用机器学习对空调系统的仿真和优化

Simulation and Optimisation of Air Conditioning Systems using Machine Learning

论文作者

Godahewa, Rakshitha, Deng, Chang, Prouzeau, Arnaud, Bergmeir, Christoph

论文摘要

在建筑物管理中,通常使用静态热固定点来保持建筑物的内部温度,无论其占用率如何。该策略会导致大量的能源浪费,从而增加与能量相关的费用。本文探讨了如何使用机器学习方法优化特定房间中使用的设定点。我们介绍了基于复发性神经网络(RNN)的深度学习模型,该模型可以直接预测未来特定房间的未来温度,并通过使用这些预测的温度来预测特定房间的温度,我们定义了最佳的热固定点,在无知的时期内可以在房间内使用。我们表明,RNN特别适合这项学习任务,因为它们使我们能够在许多相对较短的系列中学习,这对于专注于空调系统(AC)系统的特定操作模式是必不可少的。我们评估了RNN模型对一组最新模型的预测准确性,并能够以较大的边距优于这些模型。我们进一步分析了我们的RNN模型在使用大学演讲剧院的温度数据中在现实世界中优化AC系统的能源消耗的用法。根据模拟,我们表明,与不使用优化技术的传统温度控制模型相比,我们的RNN模型可以节省20%。

In building management, usually static thermal setpoints are used to maintain the inside temperature of a building at a comfortable level irrespective of its occupancy. This strategy can cause a massive amount of energy wastage and therewith increase energy related expenses. This paper explores how to optimise the setpoints used in a particular room during its unoccupied periods using machine learning approaches. We introduce a deep-learning model based on Recurrent Neural Networks (RNN) that can predict the temperatures of a future period directly where a particular room is unoccupied and by using these predicted temperatures, we define the optimal thermal setpoints to be used inside the room during the unoccupied period. We show that RNNs are particularly suitable for this learning task as they enable us to learn across many relatively short series, which is necessary to focus on particular operation modes of the air conditioning (AC) system. We evaluate the prediction accuracy of our RNN model against a set of state-of-the-art models and are able to outperform those by a large margin. We furthermore analyse the usage of our RNN model in optimising the energy consumption of an AC system in a real-world scenario using the temperature data from a university lecture theatre. Based on the simulations, we show that our RNN model can lead to savings around 20% compared with the traditional temperature controlling model that does not use optimisation techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源