论文标题

基于分数的参数不稳定性测试的生存树用于右审核数据

Survival trees for right-censored data based on score based parameter instability test

论文作者

Kundu, Madan Gopal, Ghosh, Samiran

论文摘要

右审查数据的生存分析经常在包括医学研究在内的许多研究领域产生。可以通过现有方法研究协变量(及其相互作用)对生存分布的影响,该方法需要预先指定协变量的功能形式,包括它们的相互作用。当协变量效应的形式未知时,生存树提供了相对灵活的方法。大多数当前可用的生存树建筑技术不是基于对重要性的正式测试。然而,最近提出的CTREE算法(Hothorn等,2006)使用置换测试来分裂决策,这有时可能是保守的。我们考虑参数不稳定性测试异质性的统计显着性,以防止协变量效应变化的虚假发现,而不会过分保守。我们提出了Survcart算法在条件推理框架下构建生存树(Hothorn等,2006),该算法通过参数不稳定性测试选择分裂变量,然后根据一些最大选择的统计量找到最佳分裂。值得注意的是,与仅关注事件时间分布中异质性的现有算法不同,拟议的SurvCART算法也可以在审查分布中进行拆分决策以及事件时间分布中的异质性。参数不稳定性测试的工作特性和SUSTCART算法的比较评估是通过模拟进行的。最后,将SurvCART算法应用于真实的数据设置。提出的方法已在r cran上可用的r软件包中完全实现。

Survival analysis of right censored data arises often in many areas of research including medical research. Effect of covariates (and their interactions) on survival distribution can be studied through existing methods which requires to pre-specify the functional form of the covariates including their interactions. Survival trees offer relatively flexible approach when the form of covariates' effects is unknown. Most of the currently available survival tree construction techniques are not based on a formal test of significance; however, recently proposed ctree algorithm (Hothorn et al., 2006) uses permutation test for splitting decision that may be conservative at times. We consider parameter instability test of statistical significance of heterogeneity to guard against spurious findings of variation in covariates' effect without being overly conservative. We have proposed SurvCART algorithm to construct survival tree under conditional inference framework (Hothorn et al., 2006) that selects splitting variable via parameter instability test and subsequently finds the optimal split based on some maximally chosen statistic. Notably, unlike the existing algorithms which focuses only on heterogeneity in event time distribution, the proposed SurvCART algorithm can take splitting decision based in censoring distribution as well along with heterogeneity in event time distribution. The operating characteristics of parameter instability test and comparative assessment of SurvCART algorithm were carried out via simulation. Finally, SurvCART algorithm was applied to a real data setting. The proposed method is fully implemented in R package LongCART available on CRAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源