论文标题

CNO融合周期中的中微子的实验证据

Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun

论文作者

Agostini, M., Altenmüller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., Bellini, G., Benziger, J., Biondi, R., Bravo, D., Caccianiga, B., Calaprice, F., Caminata, A., Cavalcante, P., Chepurnov, A., D'Angelo, D., Davini, S., Derbin, A., Di Giacinto, A., Di Marcello, V., Ding, X. F., Di Ludovico, A., Di Noto, L., Drachnev, I., Formozov, A., Franco, D., Galbiati, C., Ghiano, C., Giammarchi, M., Goretti, A., Göttel, A. S., Gromov, M., Guffanti, D., Ianni, Aldo, Ianni, Andrea, Jany, A., Jeschke, D., Kobychev, V., Korga, G., Kumaran, S., Laubenstein, M., Litvinovich, E., Lombardi, P., Lomskaya, I., Ludhova, L., Lukyanchenko, G., Lukyanchenko, L., Machulin, I., Martyn, J., Meroni, E., Meyer, M., Miramonti, L., Misiaszek, M., Muratova, V., Neumair, B., Nieslony, M., Nugmanov, R., Oberauer, L., Orekhov, V., Ortica, F., Pallavicini, M., Papp, L., Pellicci, L., Penek, Ö., Pietrofaccia, L., Pilipenko, N., Pocar, A., Raikov, G., Ranalli, M. T., Ranucci, G., Razeto, A., Re, A., Redchuk, M., Romani, A., Rossi, N., Schönert, S., Semenov, D., Settanta, G., Skorokhvatov, M., Singhal, A., Smirnov, O., Sotnikov, A., Suvorov, Y., Tartaglia, R., Testera, G., Thurn, J., Unzhakov, E., Villante, F. L., Vishneva, A., Vogelaar, R. B., von Feilitzsch, F., Wojcik, M., Wurm, M., Zavatarelli, S., Zuber, K., Collaboration, G. Zuzel. The BOREXINO

论文摘要

对于他们的大多数存在,恒星都通过两个理论上理解的过程(即$ pp $链和CNO循环)融合到氦进行的过程中助长了恒星。沿太阳芯中的这种融合过程散发的中微子是恒星深内部的唯一直接探针。从{\ it pp}链中的中微子的完整光谱,产生了约99 \%的太阳能,已经进行了\ cite {bib:nature-2018}。在这里,我们报告了直接观察,具有高统计学意义的直接观察,是在太阳中CNO循环中产生的中微子。这是该过程的第一个实验证据,该过程是用位于意大利地下实验室纳兹族人del Gran Sasso的前所未有的无线电大型液体示例探测器。这项实验努力的主要困难是确定由于CNO中微子相互作用在背景之上的CNO中微子相互作用而导致的每天每天少数数量的过量。一种限制\ bi污染闪烁体\ bi速率的新方法取决于过去5年中达到的检测器的热稳定。在CNO循环中,氢融合被碳(C) - 氮(N) - 氧(O)催化,因此其速率以及发射的CNO中微子的通量直接取决于太阳能核心中这些元素的丰度。因此,该结果为CNO中微子直接测量太阳金属性铺平了道路。尽管该结果量化了CNO融合在太阳中的相对贡献为1 \%,但该过程在大型恒星的能量产生中占主导地位。已经证明了氢转化为氦气的恒星转化为宇宙中的主要机制已被证明。

For most of their existence stars are fueled by the fusion of hydrogen into helium proceeding via two theoretically well understood processes, namely the $pp$ chain and the CNO cycle. Neutrinos emitted along such fusion processes in the solar core are the only direct probe of the deep interior of the star. A complete spectroscopy of neutrinos from the {\it pp} chain, producing about 99\% of the solar energy, has already been performed \cite{bib:Nature-2018}. Here, we report the direct observation, with a high statistical significance, of neutrinos produced in the CNO cycle in the Sun. This is the first experimental evidence of this process obtained with the unprecedentedly radio-pure large-volume liquid-scintillator Borexino detector located at the underground Laboratori Nazionali del Gran Sasso in Italy. The main difficulty of this experimental effort is to identify the excess of the few counts per day per 100 tonnes of target due to CNO neutrino interactions above the backgrounds. A novel method to constrain the rate of \bi contaminating the scintillator relies on the thermal stabilisation of the detector achieved over the past 5 years. In the CNO cycle, the hydrogen fusion is catalyzed by the carbon (C) - nitrogen (N) - oxygen (O) and thus its rate, as well as the flux of emitted CNO neutrinos, directly depends on the abundance of these elements in solar core. Therefore, this result paves the way to a direct measurement of the solar metallicity by CNO neutrinos. While this result quantifies the relative contribution of the CNO fusion in the Sun to be of the order of 1\%, this process is dominant in the energy production of massive stars. The occurrence of the primary mechanism for the stellar conversion of hydrogen into helium in the Universe has been proven.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源